Improved Finite-Volume Method for Radiative Hydrodynamics

نویسنده

  • Alan Wray
چکیده

Improved Finite-Volume Method for Radiative Hydrodynamics Alan Wray* Corresponding author: [email protected] * NASA Ames Research Center, USA Abstract: Fully coupled simulations of hydrodynamics and radiative transfer are essential to a number of fields ranging from astrophysics to engineering applications. Of particular interest in this work are hypersonic atmospheric entries and associated experimental apparatus, e.g., shock tubes and high enthalpy testing facilities. The radiative transfer calculations must supply to the CFD a heating term in the energy equation in the form of the divergence of the radiative heat flux and the radiative heat fluxes to bounding surfaces. It is most efficient to solve the radiative transfer equation on the same grid as the CFD solution, and this work presents an algorithm with improved accuracy compared to more conventional approaches on both structured and unstructured grids. Results are shown for a number of idealized test problems and for shock radiation during hypersonic entry. Issues of parallelization within a radiation sweep are also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of the Hydrodynamics of a Two-Dimensional Gas—Solid Fluidized Bed by New Finite Volume Based Finite Element Method

n this work, computational fluid dynamics of the flow behavior in a cold flow of fluidized bed is studied. An improved finite volume based finite element method has been introduced to solve the two-phase gas/solid flow hydrodynamic equations. This method uses a collocated grid, where all variables are located at the nodal points. The fluid dynamic model for gas/solid two-phase flow is based on ...

متن کامل

Investigation on the sloshing effect in a 2D tank under harmonic excitation using Smoothed Particle Hydrodynamics (SPH) and Finite Volume method (FVM)

Abstract Sloshing describes liquids motion in the semi-filled tanks, and exerts dynamic loading on its walls. This effect is of great importance in a number of dynamic systems e.g. aerospace vehicles, road tankers, liquefied natural gas carriers, elevated water towers and petroleum cylindrical tanks. Pressures insert impacts which are important for structural strength evaluation and its co...

متن کامل

A hybrid scheme of single relaxation time lattice Boltzmann and finite volume methods coupled with discrete ordinates method for combined natural convection and volumetric radiation in an enclosure

This paper is focused on the application of hybrid Single relaxation time lattice Boltzmann and finite volume methods in conjunction with discrete ordinates method to simulate coupled natural convection and volumetric radiation in differentially heated enclosure, filled with an absorbing, emitting and non-scattering gray medium. In this work, the velocity and temperature fields are calculated u...

متن کامل

Discrete Ordinates and Monte Carlo Methods for Radiative Transfer Simulation applied to CFD combustion modelling

Modelling radiative heat transfer in combustion applications involving complex geometries and detailed spectral properties of radiative gaseous species remains a difficult challenge, especially when full coupling with detailed chemistry and fluid dynamics is required. The Monte Carlo Method (MCM) usually considered as a reference ”exact” method for the computation of radiative transfer is howev...

متن کامل

Hydrodynamical model atmospheres and 3D spectral synthesis

1 Radiation-hydrodynamics modeling – overview In this paper we discuss three issues in the context of three-dimensional (3D) hydrodynamical model atmospheres for late-type stars, related to spectral line shifts, radiative transfer in metal-poor 3D models, and the solar oxygen abundance. To establish the context we start by giving a brief overview about the model construction, taking the radiati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012